

.NET GC Internals

Plan phase
@konradkokosa / @dotnetosorg

1 / 30

.NET GC Internals Agenda

Introduction - roadmap and fundamentals, source code, ...
Mark phase - roots, object graph traversal, mark stack, mark/pinned �ag, mark
list, ...
Concurrent Mark phase - mark array/mark word, concurrent visiting, �oating
garbage, write watch list, ...
Plan phase - gap, plug, plug tree, brick table, pinned plug, pre/post plug, ...
Sweep phase - free list threading, concurrent sweep, ...
Compact phase - relocate references, compact, ...
Generations - physical organization, card tables, ...
Allocations - bump pointer allocator, free list allocator, allocation context, ...
Roots internals - stack roots, GCInfo, partially/full interruptible methods, statics,
Thread-local Statics (TLS), ...
Q&A - "but why can't I manually delete an object?", ...

2 / 30

Mark phase...

3 / 30

Sweep

4 / 30

Sweep

4 / 30

Compact - in-place

5 / 30

Compact - in-place

5 / 30

Plan - Sweep/Compact

how to make a decision whether to sweep or to compact...?! 🤔
we need an aditional, decision-making Plan phase

6 / 30

Plan

7 / 30

Plan

7 / 30

Mark phase implementation - recap

Sequentially for every root type (like stack, �nalization, ...):

1. Collect the roots into the "to visit list" (the mark stack)
2. For each given target address addr from the mark stack:

translate it to the proper address of a managed object*
set pinning �ag (in the Header) - if the runtime says so
start traversal:

skip already visited object
mark an object (in the MT)
add its address to the mark list (if not over�owed)
add outgoing references to the mark stack

8 / 30

Plan - mark list usage

If no "mark list over�ow", after �nishing given plug, we don't scan object by object
but use sorted mark list to quickly jump to the next marked object:

#ifdef MARK_LIST
if (use_mark_list)

 {
while ((mark_list_next < mark_list_index) &&

 (*mark_list_next <= x))
 {
 mark_list_next++;
 }

if ((mark_list_next < mark_list_index) ...)
* x = *mark_list_next;
...
 }

else
#endif //MARK_LIST

9 / 30

Plan - mark list usage

Only for ephemeral GCs (gen 0/1):

// dont use the mark list for full gc because multiple segments are more complex to handle
// and the list is likely to overflow

And if not background GC:

// we are not going to use the mark list if background GC is running so let's not waste time sorting it

So, "mark list sorting story" of vectorizing mark list sorting (AVX2/AVX512F) is
bene�cial becasue it is:

faster sorting -> shorter pauses
bigger mark list sizes -> less objects scanning -> shorter pauses

10 / 30

Plan

11 / 30

Plan

11 / 30

Plan

Relocation offset for each plug, size for each gap (in fact, gap-plug pairs).

11 / 30

Plan

"Allocator" calculates the reallocation offsets of every plug:

12 / 30

Plan - gap-plug pairs storage

13 / 30

Plan - gap-plug pairs storage

13 / 30

Plan - gap-plug pairs storage

13 / 30

Plan - gap-plug pairs storage

Storing gap-plug info on the Managed Heap just before a plug is the main reason
why even an empty object must be 24-bytes in size (in case of 64-bit runtime).

14 / 30

Plan - sidenote

> !dumpheap -stat
The garbage collector data structures are not in a valid state for traversal.
It is either in the "plan phase," where objects are being moved around, or
we are at the initialization or shutdown of the gc heap. Commands related to
displaying, finding or traversing objects as well as gc heap segments may not
work properly. !dumpheap and !verifyheap may incorrectly complain of heap
consistency errors.

15 / 30

Plan - gap-plug pairs storage

16 / 30

Plan - gap-plug pairs storage

16 / 30

Plan - gap-plug pairs storage

Left/right offsets build a binary tree of plugs info.

16 / 30

Plan - bricktable

Brick size is 2,048 B for 32bit and 4,096 B for 64-bit runtimes

17 / 30

Plan - bricktable

Brick size is 2,048 B for 32bit and 4,096 B for 64-bit runtimes

17 / 30

Plan - bricktable

What will be the new address of the object at address X?

calculate the brick table entry based on address X - by simply dividing it by a
brick size
if brick table entry is <0 - jump into proper brick table entry and repeat.
if brick table entry is >0 - start to traverse plug tree to �nd proper plug.

get relocation offset from the plug and subtract it from X.

Also used for translating interior pointers (after Plan phase).

18 / 30

Plan - a little bits...

inline ptrdiff_t node_relocation_distance (uint8_t* node)
{

return (((plug_and_reloc*)(node))[-1].reloc & ~3);
}

19 / 30

Plan - left bit

If we know we will relocate a plug right next to the last plug in the previous brick -
relocation can be taken from the last plug.

if ((node <= old_loc))
 new_address = (old_address + node_relocation_distance (node));
else {

if (node_left_p (node))
 new_address = (old_address + (node_relocation_distance (node) + node_gap_size (node)));

else {
 brick = brick - 1;
 brick_entry = brick_table [brick];

goto retry;
 }
} 20 / 30

Plan - realigned bit

Information that we need to pad (add some additional space) a plug to align it
based on some requirements - like preserving doubles alignment in 32-bit runtime.

21 / 30

Plan - realigned bit

Information that we need to pad (add some additional space) a plug to align it
based on some requirements - like preserving doubles alignment in 32-bit runtime.

if (node_realigned (plug))
{
 unused_arr_size += switch_alignment_size (already_padded_p);
}

21 / 30

Plan - realigned bit

Information that we need to pad (add some additional space) a plug to align it
based on some requirements - like preserving doubles alignment in 32-bit runtime.

if (node_realigned (plug))
{
 unused_arr_size += switch_alignment_size (already_padded_p);
}

We will see "large (double than normal) alignment" here and there.

21 / 30

Plan - pinning

22 / 30

Plan - pinning

22 / 30

Plan - pinning

Pinned plug - special marked plug

zeroed relocation offset
additional info about free space before it (in case of compaction)

Easy case because there was a gap before it.

23 / 30

Plan - pinning

Pinned plug after normal plug

24 / 30

Plan - pinning

Pinned plug after normal plug

Pinned plug queue is used to save this info (and we reuse mark stack -
mark_stack_array here 👀)

24 / 30

Plan - pinning

Pinned plug before normal plug

25 / 30

Plan - pinning

Pinned plug is located before at least two marked objects - we could create HUGE
pinned plug this way...

26 / 30

Plan - pinning

Pinned plug is located inside larger block of marked objects

27 / 30

Plan - pinning

Pinning consequences summary:

copying pre and post plugs introduces memory traf�c
pinned plug can be extended by a single object so more memory is being
pinned than it could be
during Plan phase some objects on the Managed Heap are "destroyed" making it
not "walkable" in a normal way

28 / 30

Plan - Large Object Heap

all this was described for Small Object Heap - where we expect many small
objects and occassional compacting
LOH is for not-so-many large objects (almost) never compacted, thus it is much
simpler and optional:

no grouping into plugs/gaps - every object is a "plug"/"gap"
no bricktables
small padding (of type Free) between all objects - to have space for plug info

29 / 30

Plan - Large Object Heap

all this was described for Small Object Heap - where we expect many small
objects and occassional compacting
LOH is for not-so-many large objects (almost) never compacted, thus it is much
simpler and optional:

no grouping into plugs/gaps - every object is a "plug"/"gap"
no bricktables
small padding (of type Free) between all objects - to have space for plug info

29 / 30

Plan - Large Object Heap

all this was described for Small Object Heap - where we expect many small
objects and occassional compacting
LOH is for not-so-many large objects (almost) never compacted, thus it is much
simpler and optional:

no grouping into plugs/gaps - every object is a "plug"/"gap"
no bricktables
small padding (of type Free) between all objects - to have space for plug info

29 / 30

Plan - Large Object Heap

all this was described for Small Object Heap - where we expect many small
objects and occassional compacting
LOH is for not-so-many large objects (almost) never compacted, thus it is much
simpler and optional:

no grouping into plugs/gaps - every object is a "plug"/"gap"
no bricktables
small padding (of type Free) between all objects - to have space for plug info

29 / 30

Plan phase - inside code

All this happens in gc_heap::plan_phase method. The new location of each plug
is calculated by calling allocate_in_condemned_generations or
allocate_in_older_generations. Optional gc_heap::plan_loh may be also called. In
the end, to make a decision decide_on_compacting is called.

30 / 30

